What Determines Meridional Heat Transport in Climate Models?
نویسندگان
چکیده
The annual mean maximum meridional heat transport (MHTMAX) differs by approximately 20% among coupled climate models. The value of MHTMAX can be expressed as the difference between the equator-topole contrast in absorbed solar radiation (ASR*) and outgoing longwave radiation (OLR*). As an example, in the Northern Hemisphere observations, the extratropics (defined as the region with a net radiative deficit) receive an 8.2-PW deficit of net solar radiation (ASR*) relative to the global average that is balanced by a 2.4-PW deficit of outgoing longwave radiation (OLR*) and 5.8 PW of energy import via the atmospheric and oceanic circulation (MHTMAX). The intermodel spread of MHTMAX in the Coupled Model Intercomparison Project Phase 3 (CMIP3) simulations of the preindustrial climate is primarily (R 5 0.72) due to differences in ASR* while model differences in OLR* are uncorrelated with the MHTMAX spread. The net solar radiation (ASR*) is partitioned into contributions from (i) the equator-to-pole contrast in incident radiation acting on the global average albedo and (ii) the equator-to-pole contrast of planetary albedo, which is further subdivided into components due to atmospheric and surface reflection. In the observations, 62% of ASR* is due to the meridional distribution of incident radiation, 33% is due to atmospheric reflection, and 5% is due to surface reflection. The intermodel spread in ASR* is due to model differences in the equator-to-pole gradient in planetary albedo, which are primarily a consequence of atmospheric reflection differences (92% of the spread), and is uncorrelated with differences in surface reflection. As a consequence, the spread in MHTMAX in climate models is primarily due to the spread in cloud reflection properties.
منابع مشابه
Can global warming affect tropical ocean heat transport?
Tropical meridional ocean heat transport is studied in six coupled ocean-atmosphere models in which atmospheric CO 2 concentration has been increased. In the Indo-Pacific, the strength of Subtropical Cells (STCs) changes in response to changes in the trade winds. However, the change is not consistent among models. In contrast, in all models the tropical Indo-Pacific heat transport remains nearl...
متن کاملMechanisms Maintaining Southern Ocean Meridional Heat Transport under Projected Wind Forcing
Meridional heat transport (MHT) in the Southern Ocean (SO) and its components are analyzed with two eddy-permitting climate models. The two models present a consistent picture of the MHT response to projected twenty-first-century changes in SO winds. In agreement with a recent analysis based on an ocean data synthesis product, much of the MHT in the SO is found to be due to the time-mean fields...
متن کاملOcean Heat Transport, Sea Ice, and Multiple Climate States: Insights from Energy Balance Models
Several extensions of energy balance models (EBMs) are explored in which (i) sea ice acts to insulate the atmosphere from the ocean and (ii) ocean heat transport is allowed to have some meridional structure controlled by the wind, with minima at which the ice edge can rest. These new models support multiple stable ice edges not found in the classical EBM and a hysteresis loop capable of generat...
متن کاملA Generalized Energy Balance Climate Model with Parameterized Dynamics and Diabatic Heating
Energy balance models have proven useful in understanding mechanisms and feedbacks in the climate system. An original global energy balance model is presented here. The model is solved numerically for equilibrium climate states defined by zonal average temperature as a function of latitude for both a surface and an atmospheric layer. The effects of radiative, latent, and sensible heating are pa...
متن کاملThe effect of low ancient greenhouse climate temperature gradients on the ocean’s overturning circulation
We examine whether the reduced meridional temperature gradients of past greenhouse climates might have reduced oceanic overturning, leading to a more quiescent subsurface ocean. A substantial reduction of the pole-toEquator temperature difference is achieved in a coupled climate model via an altered radiative balance in the atmosphere. Contrary to expectations, we find that the meridional overt...
متن کامل